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It is shown how a simple property of the spherical vortex model can be used to 
investigate the dynamics of a buoyant, expanding thermal. No details of the 
vortex motion are required, only the fact that the flow round the buoyant 
region is potential. The main result is a demonstration that there is a relation 
between the two constants C and a arising in the dimensional analysis (where 
in the usual notation w = C(Ar): and r = az), which have up till now been 
measured separately and treated as independent. The analysis has been extended 
to spheroidal thermals by calculating the virtual mass for the appropriate 
outline, and it has also been generalized to include thermals in which the total 
buoyancy is increasing with time. 

Using these results, and an earlier experimental verification that the mean 
angles of spread are nearly the same under various conditions of stability, 
i t  is suggested that the whole of the mean behaviour of a thermal can be calcu- 
lated in two nearly independent steps. First, the density difference or A as a 
function of height may be calculated using purely kinematic equations of 
conservation. Secondly, the velocity is obtained from the local values of A and 
radius r,  using a mean value of C,  since this has now also been shown to vary little 
over a wide range of conditions. 

~ ~ 

1. Introduction 
The motion of buoyant ‘thermals’ in surroundings at rest has been closely 

studied in recent years, both theoretically and experimentally. The basic results 
of dimensional analysis have been supported by laboratory experiment, from 
which numerical values of various constants have been obtained, and by more 
detailed numerical calculations. The velocity w of the top and the radius r of a 
thermal may be written 

where z is the height of the front of the thermal, A = g(p, - p)/pl, p and p1 are the 
densities inside and outside the thermal, and g is the acceleration due to gravity. 
For the case of a thermal moving through uniform surroundings Scorer (1957) 
showed experimentally that in any given experiment C and a remain constant, 
there being, however, considerable variation from one experiment to another. 
His mean values are C = 1.2 and a = l /n  = 4. Turner (1963) extended the 
experiments to several cases of increasing total buoyancy, and showed that a 
is again constant with a not very different mean value, though he was not able 
to evaluate C from these experiments. 
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w = C(Ar)*, r = az = z/n, (1) 
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It has usually been assumed that the constants C and a must be evaluated 
independently using the appropriate measurements. Richards (1961) has, it is 
true, developed the vortex ring model of Turner (1957) to derive a functional form 
for the relation between the angle of spread and the rate of progress of thermals, 
but he regards the numerical factor as empirical and obtainable only from both 
sets of measurements. Richards (1963) later showed, however, that the factor so 
derived is consistent with the numerical integration due to Ogura (1962), which 
suggests that one might seek a more fundamental explanation for the relation 
between the two quantities. 

It is the main purpose of this paper to show how ideas obtained from the 
model of a spherical, or better, spheroidal, vortex may be used to investigate 
the dynamics of a thermal, and in particular to derive a numerical relation 
between C and a. To do this i t  is not necessary to specify the details of the interior 
motion, as was done by Levine (1959), but only certain overall properties of the 
exterior flow. 

2. The spherical vortex model 
Woodward (1959) has shown experimentally that the motion inside a thermal 

is instantaneously rather like that in a slightly flattened spherical vortex. As 
the size increases, the velocity distribution remains similar at all times with a 
sharp boundary between turbulent, buoyant fluid and the environment. Levine 
(1959) went further and used Hill’s model of a spherical vortex (which is described 
in Lamb 1932), but he considered the case of constant size and a turbulent 
interchange in both directions across its edge. Recently Turner (1964) has pur- 
sued the consequences of assuming an expanding Hill’s spherical vortex, and has 
shown that most of the kinematic features of Woodward’s experiments can be 
described well in this way. 

The basic fact about this last model which we shall need to use is that the 
motion a t  any instant outside a spherical boundary of increasing radius is just 
the same as the potential flow round a solid sphere of the same size. The circulating 
motion inside is also specified in the model, but since only the linear momentum 
equation is required here, only the motion of the centre of mass is relevant. 
Although the flow round the vortex can be regarded as frictionless, ‘resistance to 
motion ’ arises in two ways; by the incorporation of external fluid into the expand- 
ing sphere, and as a virtual mass effect due to the displacement of fluid round 
the thermal. It will later be seen how these two terms can be evaluated for shapes 
other than spherical. 

It was shown by Turner (1957) how extra information about the motion of a 
thermal can be obtained by regarding it as a special case of a buoyant vortex 
ring, and the result we are seeking now represents an extension of this earlier 
work. The impulse associated with a system of circular vortices is of the form 

P = rpKR2, (2) 

where K is the circulation round the ring, and R is the radius of the circular 
axis of the system of vortices (Lamb 1932, p. 239). In  a uniform environment 
the assumption of constant total buoyancy combined with that of similarity 
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implies that K is constant; its value is determined by the conditions of formation 
of the vortex. For Hill’s spherical vortex the result (2) may be put in a form which 
no longer involves K explicitly, but only the velocity w, of the centre of the sphere 

( 3 )  
and r its radius, namely P = 2npr3wo, 

= QPVW,, ( 3 4  

where V is the volume of the sphere. The factor Q is just the virtual mass co- 
efficient by which the impulse of the sphere regarded as a solid body must be 
increased to give that of all the fluid set into motion. This is a verification in one 
particular case of a more general result; equation (3a)  could in fact have been 
written down immediately without reference to the interior motion. 

The buoyancy force acting to increase the impulse of the system is 

pT= pAK (4) 

dPldt = pF. (5) 

and we can write an equation for the rate of change of the impulse 

Let us define C, and a, to be the corresponding constants to those in (1) if w, 
and z,, the velocity and height of the centre, are used instead of those at the top. 
Then using ( 3 ) ,  and remembering that K cc rw, remains constant, it  follows that 

dPldt = 47rpr2aOw,2 = pAV.  

c2a -1 

Thus in terms of the properties of the centre of a spherical vortex the desired 
result has been obtained, i.e. a numerical relation between C, and a,. 

This can be immediately converted into a relation between C and a by using 
an identity obtained from the geometry of the expanding sphere. By definition 
z = z, + r ,  so that dz,/dt = w, = w( 1 - a). Elimination of A and r from (1) and 
the similar expressions for the centre of the sphere gives 

wC, = w,C and wa = w,a,. 

This reduces to wf = rA/3a0, ( 6 )  

(7 )  or, comparing with (l), 0 0-3. 

Combining these last three equalities we obtain 

eta, = CZa(1-a) = Q. 
If the experimental mean value of a = t is substituted directly, we obtain 
C = Q which is rather higher than that observed for C. In  the next section, 
however, we shall show that closer agreement is obtained if proper allowance is 
made for the observed flattening of thermals. 

3. Spheroidal boundaries 
The idea on which the above calculation is based may be applied more gene- 

rally. For all shapes of thermals, there will be a boundary, close to the visible 
edge, outside which frictional effects are negligible, and the flow therefore 
potential. The change in shape affects the dynamics through its effect on the 
‘virtual mass’ of the solid body of the same shape, which depends only on this 
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exterior flow. For definiteness and ease of calculation, it is assumed here that 
the outline can be approximated by spheroids of various eccentricities. 

The required results are readily available, and are given in a convenient form 
by Ramsey (1935, p. 186). The virtual mass coefficient C, ,  to replace the factor # 
in (3a) ,  is for an oblate spheroid of revolution 

tan@-6' 
0- sin 8 cos 8' 

c, = 1 + ___-~-- (9) 

where e = sin 8 is the eccentricity of the elliptical section. The values calculated 
for various ratios r/b of major to minor axis of the ellipse are shown in table 1, 
together with the shape factor 

m = V/r3 = 4 3n(b/r) * 

It is interesting to note that over this range of rib, 1.0-2.0, the tabulated C ,  
are within 5 %  of that obtained by assuming that the addition to the impulse 
due to the flow round the spheroid is the same as for a sphere of radius r ,  i.e. 
C, z 1 + (r/2b), This value is also shown in table 1. 

Following through the arguments leading to (7 )  and (S),  it is found that these 
must now be replaced by cga, = (2C,)-1 

and 
z b/(2b+r), 

C$a, = C%( 1 - ab/r). 

With the values a = 4 and m = 3 suggested by Scorer (1957), we obtain 
C$ a, = 0.29 (instead of Q for the spherical vortex) and C = 1.2, in close agreement 
with the mean experimental value. The use of a smaller value of rn, as suggested 
by the results of Saunders (1962), leads to a slightly lower value of C ,  but still 
within the experimental uncertainty. 

It will now be shown how the same results may be used to make a numerical 
estimate of the factor determined empirically by Richards (1961). Using our 
notation, he showed that if 

then his results could be represented by 

22 = k,t ,  (12) 

k, = C , d (  VA)g, (13) 

where rt = l/a as defined in (1) and C, is about 0.73. The following analysis will 
show that C, is not strictly constant, but depends only weakly on the shape and 
angle of spread. 

Using (1) and (13) it follows that 

k1 = 2(r/a)  C(rA)*. (14) 

Eliminating C using the results (10) and (11)  appropriate to a spheroid, and 
grouping the terms to bring the expression into the form (13), gives 

or 



Spheroidal masses of buoyant Jluid 485 

Notice that the last term in this expression arises only because properties at 
the top of thermals are usually measured; if everything were referred to the 
centre of gravity it would be absent and the whole dependence of k, on n would be 
like n#. Although there are several variable factors in (16) (it is strictly constant 
only for a fixed shape and angle of spread), their combined effect causes only 
small changes in C,. The variation of the term (r/b)g C , *  is shown, for example, in 
the last column of table 1. The dependence on 01. is also small, and the value 
corresponding to 01. = & and m = 3 is C, = 0.69, in good agreement with Richards’ 
estimate, C, = 0.73. 

r l b  e = sin 0 m 

r 
’+% 

1.0 0 4.19 1.50 1.50 0.82 
1.2 0.552 3.49 1.62 1.60 0.86 
1.4 0.700 3.00 1.74 1-70 0.90 
1.6 0.780 2.62 1.87 1.80 0.93 
1.8 0.830 2.33 1-99 1-90 0.95 
2.0 0.865 2.10 2.10 2.00 0.98 

TDLE 1. The properties of spheroidal bodies having various ratios r/b of major to minor 
axis and eccentricity e. m is the shape factor defined by V = mr3, and C, the virtual mass 
coefficient as defined in the text. 

As previously stated, this result also sheds light on the close agreement of 
Ogura’s model with some of the experimental results. The existence of a particular 
value of n in his calculations should probably be regarded as fortuitous, and 
dependent on the initial distribution of buoyancy and the way this generates 
circulation during the acceleration from rest. Given a certain value of n, however, 
we have just seen that the dynamics of a buoyant region, in particular the quan- 
tity k,, depends mainly on the total buoyancy through the factor (VA)* and the 
angle of spread through n%. The dependence on the shape of the region, and the 
virtual mass coefficient, is slight. Now the motions calculated by Ogura may 
also be regarded as equivalent, instantaneously, to the translation of a solid 
body and the potential flow around it, plus an interior flow with no net impulse. 
For any shape not too different from spherical the arguments used above would 
again apply, so that we would expect the value of the factor C, to differ little 
from those just deduced. This is indeed borne out by the numerical results. 

4. Thermals with increasing total buoyancy 
Similar arguments may be used to study the dynamics of thermals whose 

total buoyancy is changing in a specified manner. Turner (1963) has recently 
carried out experiments which show that thermals still spread linearly, with a 
slightly smaller angle, when the acceleration or the velocity is constant, but 
through uncertainties in the density measurements little reliable quantitative 
information was obtained about the dynamics. It will now be shown how this 
gap may be filled theoretically. 



486 J .  8. Turner 

(a )  Constant acceleration 
As shown in the paper just mentioned, constant acceleration a of the top implies 
that the mean density difference between the thermal and its surroundings is 
constant, or a = @A, (17) 

where @ is a constant. Although the same equation ( 5 )  may be written down to 
describe the motion at  any time, in evaluating the derivative we must now keep 
in mind the fact that A and not Two remains constant. Thus we obtain for a spheri- 

i.e. still the same form of relation between C and a but with a different constant. 
For a flattened thermal (10) must be modified similarly, and the term &C;l 
replaced by +C;l. Experimentally it was observed that the mean m was 4.3, so 
that these thermals were nearly spherical, and the mean a was 0.20. The corre- 
sponding value of C is 1 * 1. 

It is also possible to obtain a theoretical value for 1 to compare with the 
experimental upper limit, which was /3* = 0.34. The changing buoyancy in these 
experiments was produced by the chemical release of small bubbles, and the total 
volume of gas and hence A estimated by measuring the volume of water displaced 
by the gas and overflowing into a side tube. Because the buoyancy was changing 
so rapidly, i t  was suspected at  the time that this measurement underestimated 
A and therefore overestimated /3. 

Using (l), and remembering that A is constant, we obtain for the case of the 
sphere, 

a = dui/dt = &CA*r-#dr/dt 
= +C2aA 

= &[A/( 1 -a)]  from (18). (19) 

Thus with a = 0.20, @ = 0.12, or about one-third of /3*. The experimental value 
is indeed a serious overestimate. 

(b )  Constant velocity 
If the total buoyancy within the thermal is changing with time in such a way 
that the mean velocity w remains constant, the derivative dPldt in the impulse 
equation may again be evaluated. In this case we find instead of (8): 

cg a. = C2a( 1 -a) = 3. (20) 

For the spheroidal case, the right-hand side of (10) will become (3CJ-l. With the 
experimental mean values of WL = 2.9 and a = 0.23 determined for thermals 
having constant velocity, C = 1-0. 

5. The application to the atmosphere 
The results obtained in the previous section, together with the laboratory 

experiments referred to there, have important implications which have been 
mentioned briefly elsewhere (Turner 1963), but merit a more detailed discussion. 
The numerical values have, for ease of reference, been collected together in table 2. 
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The application of the laboratory results which we have had in mind is of course 
the growth of cloudy thermals in the atmosphere. Before attempting to make 
this comparison, we should consider again how closely the laboratory motion, of 
an element with changing buoyancy in neutral surroundings, can be said to model 
the more usual case in the atmosphere where an initally statically stable environ- 
ment is made unstable by the release of extra buoyancy in the form of latent 
heat. In  both cases the instability can be confined to the moving region, and this 
being so we might expect that the behaviour would be similar in the two cases 

Type of thermal a 111. C 
Neutral surroundings 0-25 3.0 1.2 
Constant velocity 0.23 2.9 1.0 
Constant acceleration 0.20 4-3 1.1 
Typical values 0.23 - 1.1 

TABLE 2. Summarizing the properties of thermals in various conditions of stability. The 
hdf angle of spread a and the shape factor m are mean values taken from the laboratory 
experiments reported previously, and C has been deduced from the theory of the present 
paper. 

provided the mean density differences between the thermal and its surroundings 
have the same time history. There are two important qualifications: the density 
gradients in the environment should not be so large that erosion of the element 
occurs, and no substantial energy should be carried away in the form of waves in 
the stratified medium, thus introducing a term into the drag which is not included 
in (5 ) .  The results of Warren (1960) suggest that the wave energy is negligible 
unless the thermal is about to come to rest because its buoyancy has reversed; 
and erosion is also only important in these circumstances. For all the cases 
considered in this paper, for which the total buoyancy is either constant or 
increasing, the comparison between laboratory experiments and the atmosphere 
should be valid. 

The most important fact about the results in table 2 is theirrelativeinsensitivity 
to the stability of the thermals: whether they are accelerating or decelerating, 
the spread has been shown to be linear, with only a small range of mean angles, 
and the relation between the velocity and the local properties is always nearly 
the same. This implies that the variation of internal properties with time, and the 
dynamics of the elements, can be treated as separate problems as follows. 

( a )  Implications of the linear spread of thermals 

First, with a linear spread, the fractional rate of entrainment per unit height E 
(originally defined by Stommel 1947) assumes an especially simple form: 

where z is the distance from the virtual origin. This inverse dependence of rate 
of entrainment on element size has of course been suggested before, but we are 
now able to put closer limits on the values of the constants. It is possible in fact 
to use a single mean value of a, say a = 0.23, to represent the entrainment in all 
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unstable situations. The variations of a will be much less important than those 
due to the large range of sizes encountered. As examples we might take r = 3 km 
for which E M 0.23 km-l, and r = 4 km, E M 1.4 km-1; these are consistent 
with experimental values reported in the literature for thunderstorm towers and 
trade wind cumuli respectively. 

Now the dimensional arguments leading to a linear spread of thermal are 
entirely equivalent to the entrainment assumption, that fluid is entering the 
surface of the element at a mean rate which is proportional to the upwardvelocity. 
Thus for a spherical element the equation 

d 
-(+nr3) = 4nr2aw 
dt 

implies r = ax, and the entrainment constant is just the tangent of the half angle 
of spread. (For non-spherical elements there will of course be a factor introduced, 
due to the change in the surface to volume ratio, but the numerical differences 
are small and for simplicity only the spherical case will be considered here.) This 
result is purely kinematic, and independent of the properties of the environment 
and the dynamics of the motion. Again we may use a single typical value of a 
in all cases. 

(b )  Conservation relations for other properties 
The linear spread with height allows one to predict not only the rate of entrain- 
ment of mass from the environment, but also the variation of any property 
associated with the entrained fluid. Consider the variation within a thermal of 
any property which is conserved on mixing and which has a concentration say 
q(z) inside the element and ql(z) in the environment. The equations will again 
be developed for an incompressible fluid, but the extensions to the atmosphere 
where extra expansion is caused by pressure changes is immediate if concentra- 
tions per unit mass are used. 

The essential point is that these calculations use only conservation equations 
for the property under consideration, once the change in size has been specified 
as a function of height. Thus for a spherical element an equation for q may be 
derived from (22) in the form 

Combining (22) and (23) gives 
d(+r3q)/dt = ar2wql. (23) 

or zdqldz = 3(ql-q). (24) 

rdq/dt = 3aw(pl-q), 

The derivation of (24) has not used any specific assumption about the de- 
pendence of q1 on height. It may easily be solved, for example, for an element 
starting from a point or a finite source with a power-law concentration gradient. 
As a simple example consider a linear variation and a point source, i.e. put 
q1 = qo + cz. In this case dq/dz is also constant and from (24) it  must be equal 
to @. Thus the difference in concentration of the property q between the inside 
and the outside in a unit height interval is is, or one quarter of the value it would 
have if no mixing took place. This result (which is independent of a provided the 
ratio of final to initial radius is large) was obtained by Ludlam (1958) in another 
form. The angle of spread does of course enter into solutions of (24) which begin 
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with a finite size, but the ‘memory’ of initial properties is appreciable only over 
displacements comparable with the diameter of the element. Warner (1963) has 
recently discussed this case of finite initial radius. 

Let us now suppose that q refers first to the total moisture, and then to the 
potential temperature of the element assuming no condensation takes place. The 
variation of the mean internal values of these two quantities with height may be 
found in simple cases by exact, or in more complex situations by numerical, 
integration of (24) when q,(z) is known. Condensation can then be considered, 
using the known dependence of saturation mixing ratio on the temperature, 
and the final virtual temperature difference and liquid water concentration 
calculated. 

Thus the experimental result that there is a linear spread with only small 
variations of mean a over a wide range of stability conditions, leads finally to 
estimates of r and A (or the density difference between a thermal and its 
surroundings) at any height. These estimates have been made without saying 
anything about the dynamical behaviour and this may now be considered as a 
separate, nearly independent step. 

(c) Estimates of therma,l velocity 

The calculations of section (4) have shown that for a wide range of stabilities, 
neutral to very unstable, the motion of a thermal can be well described by 
equations of the form (1) with only small variations of the numerical factor C 
from case to case. That is, the velocity is determined mainly by the local A and r ,  
and only to a minor extent by the fact that the thermal is accelerating or de- 
celerating. There will still be variations of n between individual experiments 
which cannot be predicted in detail, but if the mean behaviour is of interest, we 
see from table 2 that C = 1.1 is the appropriate value to use in (1). The quantities 
A and r might of course be available directly from experiment, but if not, the 
previous section has shown how mean values can in principle be calculated 
from the properties of the environment. 

It should be emphasized again that one important exception must be made in 
the application of either the kinematic or dynamic result. Neither will be valid 
in very stable environments, when a thermal is losing buoyancy rapidly and 
overshooting the level of zero buoyancy. First, the assumption of linear spread 
may break down there, as discussed by Turner (1960). Secondly, the phenomena 
of erosion and wave generation will make a simple impulse equation like (5) no 
longer relevant, since it leaves out important contributions to the drag. In  all 
cases where cloud thermals are growing vigorously in a still environment, how- 
ever, both parts of the calculation should certainly be applicable. 

This work was carried out while the author was on leave from the C.S.I.R.O. 
Division of Radiophysics, Sydney, Australia. I am indebted to the Woods Hole 
Oceanographic Institution for the award of the Rossby Fellowship, and to Dr 
Claes Rooth for his helpful criticisms. This is contribution No. 1469 of the Woods 
Hole Oceanographic Institution, and was supported in part by NSF Contract 
No. GP 317. 
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